FarmHub

Chapter 22 Aquaponics as an Educational Tool

22.9 Discussion and Conclusions

An aquaponics is a perfect example of a system that can bring nature closer to a classroom and can be used as the starting point for a host of educational activities at both primary and secondary school levels. A model system, together with corresponding didactic methods, serves to make natural processes more tangible to pupils. This, in turn, helps to develop the necessary competencies for dealing with the complexity and problems of the environment, and promotes a sense of responsibility toward humanity.

· Aquaponics Food Production Systems

22.8 Does Aquaponics Fulfill Its Promise in Teaching? Evaluation of Students' Responses to Aquaponics

22.8.1 EU FP6 Project “WasteWaterResource” The aim of the Waste Water Resource project was to assemble, develop, and assess teaching and demonstration material on ecotechnological research and methods for pupils aged between 10 and 13 years (http://www.scientix.eu/web/guest/projects/ project-detail?articleId=95738). The teaching units were assessed in order to improve the methods and content and maximize learning outcomes. Based on discussions with educational professionals, the assessment was based on a simple approach using questionnaires and semi-structured interviews.

· Aquaponics Food Production Systems

22.7 Does Aquaponics Fulfill Its Promise in Teaching? Assessments of Teaching Units by Teachers

22.7.1 Teacher Interviews in Play-With-Water Aquaponic teaching units were assessed in the FP6 project “Play-With-Water” on seven separate occasions in three countries (Sweden, Norway, Switzerland). This involved six schools (1 school in Norway, 1 in Sweden, and 4 in Switzerland) where the age of students ranged between 7 and 14 years. Six teachers were asked to keep a diary, which they then used to answer an online questionnaire complemented with phone interviews, which are summarized in Table 22.

· Aquaponics Food Production Systems

22.6 Aquaponics in Higher Education

Higher education programs need to be adapted to meet the expectations of the new millennium, such as long-term food security and sovereignty, sustainable agriculture/food production, rural development, zero hunger, and urban agriculture. These important drivers mean that higher education institutions involved in the areas of food production can play a key role in the teaching of aquaponics through both capacity development and knowledge creation and sharing. Additionally, it is clear that the interest in teaching and learning aquaponics is increasing (Junge et al.

· Aquaponics Food Production Systems

22.5 Aquaponics in Vocational Education and Training

UNESCO-UIS/OECD/EUROSTAT (2017) defines vocational education programs as “designed for learners to acquire the knowledge, skills and competencies specific to a particular occupation, trade, or class of occupations or trades. Successful completion of such programs leads to labour market relevant, vocational qualifications acknowledged as occupationally-oriented by the relevant national authorities and/or the labour market” (UNESCO, 2017). In order to educate future aquaponic farmers and aquaponic technicians, the training has to include the professional operation of aquaponics.

· Aquaponics Food Production Systems

22.4 Aquaponics in Secondary Schools

According to the ISCED classification (UNESCO-UIS 2012), secondary education provides learning and educational activities building on primary education and preparing for both first labor market entry as well as post-secondary non-tertiary and tertiary education. Broadly speaking, secondary education aims to deliver learning at an intermediate level of complexity. While at primary education level, students are mainly directed toward observational and descriptive exercises on organisms and processes in an aquaponics, students from secondary schools can be educated in understanding dynamic processes.

· Aquaponics Food Production Systems

22.3 Aquaponics in Primary Schools

According to the International Standard Classification of Education (UNESCO-UIS 2012), primary education (or elementary education in American English) at ISCED level 1 (first 6 years) is typically the first stage of formal education. It provides children from the age of about 5—12 with a basic understanding of various subjects, such as maths, science, biology, literacy, history, geography, arts, and music. It is therefore designed to provide a solid foundation for learning and understanding core areas of knowledge, as well as personal and social development.

· Aquaponics Food Production Systems

22.2 General Scenarios for Implementing Aquaponics in Curricula

The introduction of aquaponics into schools may be an aspiration, but in many countries, primary and secondary schools have rigid curricula with learning objectives that must be met by the end of each school year. Commonly, these objectives, called attainment terms or outcome competencies, are course-specific and defined by the education authorities. Thus, this calls for a well-thought-out strategy to successfully introduce an aquaponics in school classes. In comparison, colleges and universities have more freedom to map out their own curricula.

· Aquaponics Food Production Systems

22.1 Introduction

Aquaponics is not only a forward-looking food production technology; it also promotes scientific literacy and provides a very good tool for teaching the natural sciences (life and physical sciences) at all levels of education, from primary school (Hofstetter 2007, 2008; Bamert and Albin 2005; Bollmann-Zuberbuehler et al. 2010; Junge et al. 2014) to vocational education (Baumann 2014; Peroci 2016) and at university level (Graber et al. 2014). An aquaponic classroom model system provides multiple ways of enriching classes in Science, Technology, Engineering, and Mathematics (STEM).

· Aquaponics Food Production Systems