Chapter 17 Insight into Risks in Aquatic Animal Health in Aquaponics
17.5 Treatment Strategies in Aquaponics
Treatment options for diseased fish in an aquaponic system are very limited. As both fish and plants share the same water loop, medications used for disease treatments can easily harm or destroy the plants, and some may get absorbed by the plants, causing withdrawal periods or even making them unusable for consumption. The medications can also have detrimental effects on the beneficial bacteria in the system. If a medicinal treatment is absolutely necessary, it must be implemented early in the course of the disease.
· Aquaponics Food Production Systems17.4 Fish Health Management
17.4.1 Fish Diseases and Prevention While fish diseases caused by bacteria, viruses, parasites or fungi can have a significant negative impact on aquaculture (Kabata 1985), the appearance of a disease in aquaponic systems can be even more devastating. Maintenance of fish health in aquaponic systems is more difficult than in RAS, and, in fact, control of fish diseases is one of the main challenges for successful aquaponics (Sirakov et al. 2016).
· Aquaponics Food Production Systems17.3 Hazard Identification
In risk analysis, a hazard is generally specified by describing what might go wrong and how this might happen (Ahl et al. 1993). A hazard refers not only to the magnitude of an adverse effect but also to the likelihood of the adverse effect occurring (Müller-Graf et al. 2012). Hazard identification is important for revealing the factors that may favour the establishment of a disease and/or potential pathogen threat, or otherwise detrimental for fish welfare.
· Aquaponics Food Production Systems17.2 Aquaponics and Risk: A Development Perspective for Fish Health
Fish pathogens are prevalent in the aquatic environment, and fish are generally able to resist them unless overloaded by the allostatic load (Yavuzcan Yıldız and Seçer 2017). Allostasis refers to the ‘stability through change’ proposed by Sterling and Eyer (1988). Put simply this is the effort of fish to maintain homeostasis through changes in physiology. Allostatic load of fish in aquaponics may be a challenging factor as aquaponics is a complex system mainly in terms of the water quality and the microbial community in the system.
· Aquaponics Food Production Systems17.1 Introduction
The European Food Safety Authority reported a variety of drivers and potential issues associated with new trends in food production, and aquaponics was identified as a new food production process/practice (Afonso et al. 2017). As a new food production process, aquaponics can be defined as ’the combination of animal aquaculture and plant culture, through a microbial link and in a symbiotic relationship’. In aquaponics, the basic approach is to get benefit from the complementary functions of the organisms and nutrient recovery.
· Aquaponics Food Production Systems