12.4 Maraponics and Haloponics
Although freshwater aquaponics is the most widely described and practiced aquaponic technique, resources of freshwater for food production (agriculture and aquaculture) are becoming increasingly limited and soil salinity is progressively increasing in many parts of the world (Turcios and Papenbrock 2014). This has led to an increased interest and/or move towards alternative water sources (e.g. brackish to highly saline water as well as seawater) and the use of euryhaline or saltwater fish, halophytic plants, seaweed and low salt-tolerant glycophytes (Joesting et al. 2016). It is interesting to note that whilst the amount of saline in underground water is only estimated as 0.93% of world’s total water resources at 12,870,000 kmsup3/sup, this is more than the underground freshwater reserves (10,530,000 kmsup3/sup) which makes up 30.1% of all freshwater reserves (Appelbaum and Kotzen 2016).
The use of saline water in aquaponics is a relatively new development and as with most new developments the terms used to describe the range/hierarchy of types needs to be established on a firm footing. In its short history, the term maraponics (i.e. marine aquaponics) has been coined for seawater aquaponics (SA), in other words, systems that use seawater as well as brackish water (Gunning et al. 2016). These systems are mainly located on-land, in coastal locations and in the case of SA, close to a seawater source. But there are fish as well as plants that grow and can be used in aquaponic units where water salinity levels vary. Thus whilst it makes etymological sense to use the term ‘maraponics’ for seawater aquaponics, it makes less sense to term brackish water aquaponics using this term. We thus suggest that a new term needs to be added to the aquaponic lexicon and this is ‘haloponics’, deriving from the Latin word halo meaning salt and combining this with suffix ponics. Thus maraponics is an on-land integrated multitrophic aquaculture (IMTA) system combining the aquacultural production of marine fish, marine crustaceans, marine molluscs, etc. with the hydroponic production of marine aquatic plants (e.g. marine seaweeds, marine algae and seawater halophytes) using oceanic strength seawater (approximately 35,000 ppm [35 g/L]). However aquaponic systems utilizing saline water below oceanic levels in a range of salinities should be termed haloponics (slightly saline water —1000 to 3000 ppm [1—3 g/L], moderately saline 3000—10,000 ppm [3—10 g/L] and high salinity 10,000—35,000 ppm [10—35 g/L]). These systems are also on-land IMTA systems combining aquacultural production with the hydroponic production of aquatic plants, but both the fish and plants are adapted to or grow well in what may be termed brackish water.
Although the concept of maraponics is very new, an interest in on-land seaweedbased integrated mariculture began to appear in the 1970s, starting from a laboratory-scale and then expanding to outdoor pilot-scale trials. In some of the earliest experimental studies, Langton et al. (1977) successfully demonstrated the growth of the red seaweed, Hypnea musciformis, cultured in tanks with shellfish culture effluent. Alternatively, crops that would usually be classed as glycophytes, such as the common tomato (Lycopersicon esculentum), the cherry tomato (Lycopersicon esculentum var. Cerasiforme) and basil (Ocimum basilicum), can achieve remarkably successful production levels at up to 4 g/L (4000 ppm) salinity and are often referred to as having low-moderate levels of salt tolerance (not to be confused with true halophytes, which are resistant to high salinities). Other crops that are tolerant of low-moderate salinities include turnip, radish, lettuce, sweet potato, broad bean, corn, cabbage, spinach, asparagus, beets, squash, broccoli and cucumber (Kotzen and Appelbaum 2010; Appelbaum and Kotzen 2016). For example, Dufault et al. (2001) and Dufault and Korkmaz (2000) experimented with shrimp waste (shrimp faecal matter and decomposed feed) as a fertilizer for broccoli (Brassica oleracea italica) and bell pepper (Capsicum annuum) production, respectively. Although their studies did not use maraponic techniques, they involved plants that are commonly grown using aquaponic (freshwater) techniques. Therefore, due to their salinity tolerance levels, these crops have enormous potential as candidate species for production in haloponic systems using low to medium salinities.
Recently, a number of studies have shown that halophytes can be successfully irrigated with aquacultural wastewater from marine systems using hydroponic techniques or as part of a recirculating aquaculture system (RAS). Waller et al. (2015) demonstrated the feasibility of nutrient recycling from a saltwater (16 psu salinity [16,000 ppm]) RAS for European sea bass (D. labrax) through the hydroponic production of three halophytic plants: Tripolium pannonicum (sea aster), Plantago coronopus (buck’s horn plantain) and Salicornia dolichostachya (long spiked glasswort).
The majority of the maraponic work conducted so far involves the integration of two trophic levels — plants/algae and fish. However, an example of a system incorporating more than two trophic levels can be seen in an experiment conducted by Neori et al. (2000), who designed a small system for the intensive land-based culture of Japanese abalone (Haliotis discus hannai), seaweeds (Ulva lactuca and Gracilaria conferta) and pellet-fed gilthead bream (Sparus aurata). This system consisted of unfiltered seawater (2400 L/day) pumped to two abalone tanks and drained through a fish tank and finally through a seaweed filtration/production unit before being discharged back to the sea. Filter feeding molluscs could also be used in such a system. Kotzen and Appelbaum (2010) and Appelbaum and Kotzen (2016) compared the growth of common vegetables using potable water and moderately saline water (4187—6813 ppm) and found that basil (Ocimum basilicum), celery (Apium graveolens), leeks (Allium ampeloprasum porrum), lettuce (Lactuca sativa — various types), Swiss chard (Beta vulgaris. ‘cicla’), spring onions (Allium cepa) and watercress (Nasturtium officinale) performed extremely well.
Maraponics (SAs) and haloponics offer a number of advantages over traditional crop and fish production methods. Because they use saline water (marine to brackish), there is a reduced dependence on freshwater, which in some parts of the world has become a very limited resource. It is typically practiced in a controlled environment (e.g. a greenhouse; controlled flow-rate tanks) giving better opportunities for intensive production. Many maraponic and haloponic systems are closed RAS with organic and/or mechanical biofilters and subsequently, water reuse is high, wastewater pollution is vastly reduced or eliminated, and contaminants are removed or treated. Even systems that are not RAS can significantly reduce the excess nutrients in the wastewater prior to discharge. Additionally, the occurrence of contaminants in non-RAS maraponic and haloponic systems can be reduced or eliminated through the use of water containing low levels of naturally occurring contaminants and the use of alternatives aquafeeds that do not contain dioxins or PCDs (e.g. novel feeds made from macroalgae). This improvement in water quality reduces the potential for disease occurrence and the need for antibiotic use is therefore vastly reduced. Due to their versatile configuration and low water requirements, maraponics and haloponics can be successfully implemented in a wide variety of settings, from fertile coastal areas to arid deserts (Kotzen and Appelbaum 2010), as well as in urban or peri-urban settlements. Another potential benefit is that many of the species that are suitable for these systems have a high commercial value. For example, the euryhaline European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) can fetch a market price of €9/kg and €6/kg, respectively. Additionally, edible halophytes tend to have a high market price, with sea-agretti (Salsola soda), for example, having a market price of €4—€4.5/kg and marsh samphire (Salicornia europaea) selling at €18/kg in supermarkets.
The evidence is therefore compelling. Maraponics and haloponics provide a dynamic and rapidly growing field that has the potential to provide a number of services to communities, many of which are explored elsewhere in this publication.