FarmHub

FarmHub

6.4 Microbial Equilibrium and Enhancement in Aquaponics Units

Productivity in aquaponics system involves monitoring and managing environmental parameters in order to provide each component, whether microbial, animal or plant, with optimal growth conditions. Whilst this is not always possible given tradeoffs in requirements, one of the key goals of aquaponics revolves around the concept of homeostasis, wherein maintaining stability of the system involves adjusting operational parameters to minimize unnecessary perturbations that cause stress within a unit, or detrimental effects on other components.

· Aquaponics Food Production Systems

6.3 Biosecurity Considerations for Food Safety and Pathogen Control

6.3.1 Food Safety Good food safety and ensuring animal welfare are high priorities in gaining public support for aquaponics. One of the most frequent issues raised by food safety experts in relation to aquaponics is the potential risk of contamination with human pathogens when using fish effluent as fertilizer for plants (Chalmers 2004; Schmautz et al. 2017). A recent literature search to determine zoonotic risks in aquaponics concluded that pathogens in contaminated intake water, or pathogens in components of feeds originating with warm-blooded animals, can become associated with fish gut microbiota, which, even if not detrimental to the fish themselves, can potentially be passed up the food chain to humans (Antaki and Jay-Russell 2015).

· Aquaponics Food Production Systems

6.2 Tools for Studying Microbial Communities

New technologies for studying how microbial communities change over time, and which groups of organisms predominate under particular environmental conditions, have increasingly offered opportunities to anticipate adverse outcomes within system components and thus lead to the design of better sensors and tests for the effective monitoring of microbial communities in fish or plant cultures. For instance, various ‘omics’ technologies — metagenomics, metatranscriptomics, community proteomics, metabolomics — are increasingly enabling researchers to study the diversity of microbiota in RAS, biofilters, hydroponics and sludge digestor systems where sampling includes whole microbial assemblages instead of a given genome.

· Aquaponics Food Production Systems

6.1 Introduction

Recirculating water in the aquaculture portion of an aquaponics system contains both particulate and dissolved organic matter (POM, DOM) which enter the system primarily via fish feed; the portion of feed that is not eaten or metabolized by fish remains as waste in the recirculating aquaculture system (RAS) water, either in dissolved form (e.g. ammonia) or as suspended or settled solids (e.g. sludge). Once the majority of sludge is removed by mechanical separation, the remaining dissolved organic matter must still be removed from a RAS system.

· Aquaponics Food Production Systems

5.9 Advantages of Aquaponics

Because there are two separate, existing, analogous technologies that produce fish and plants at high rates (RAS fish culture and hydroponic/substrate culture plant production), a reason for their integration seems pertinent. RAS produces fish at productive rates in terms of individual biomass gain, for the feed weight added, that rivals, if not betters, other aquaculture methods (Lennard 2017). In addition, the high fish densities that RAS allows lead to higher collective biomass gains (Rakocy et al.

· Aquaponics Food Production Systems

5.8 Aquaponics as an Ecological Approach

Aquaponics, until recently, has been dominated by fully recirculating (or coupled) design approaches that share and recirculate the water resource constantly between the two major components (fish and plant culture) (Rakocy et al. 2006; Lennard 2017). In addition, the low to medium technology approaches historically applied to aquaponics have driven a desire to remove costly components so as to increase the potential of a positive economic outcome. One of the filtration components almost always applied to standard RAS and hydroponics/substrate culture technologies, that of aquatic sterilisation, has regularly not been included by aquaponic designers.

· Aquaponics Food Production Systems

5.7 Nutrient Sources

The major input to any aquaponic system are the nutrients added because aquaponic systems are designed to efficiently partition the nutrients added to them to the three important forms of life present: the fish and plants (which are the main products of the system) and the microflora (which assist to make the added nutrients available to the fish and plants) (Lennard 2017). In classical, fully recirculating aquaponic designs, one of the key design drivers is to use the main nutrient input source, the fish feed, as efficiently as possible and therefore fully recirculating designs strive to supply as many of the nutrients required for the plants from the fish feed (Lennard 2017).

· Aquaponics Food Production Systems

5.6 Applicable Fish Culture Technologies

In aquaponics, the aquaculture portion of the integration equation is broadly applied in a tank-based context, where the fish are kept in tanks, the water is filtered via mechanical (solids removal) and biological (ammonia transformation to nitrate) mechanisms and dissolved oxygen is maintained, either via aeration or direct oxygen injection (Rakocy et al. 2006; Lennard 2017). As has been argued in Sect. 5.0 (Introduction) of this chapter, historical examples of chinampas (Somerville et al.

· Aquaponics Food Production Systems

5.5 Water Quality Requirements

Aquaponics represents an effort to control water quality so that all the present life forms (fish, plants and microbes) are being cultured in as close to ideal water chemistry conditions as possible (Goddek et al. 2015). If water chemistry can be matched to the requirements of these three sets of important life forms, efficiency and optimisation of growth and health of all may be aspired to (Lennard 2017). Optimisation is important to commercial aquaponic production because it is only through optimisation that commercial success (i.

· Aquaponics Food Production Systems

5.4 Water Sources

Water is the key medium used in aquaponic systems because it is shared between the two major components of the system (fish and plant components), it is the major carrier of the nutrient resources within the system and it sets the overall chemical environment the fish and plants are cultured within. Therefore, it is a vital ingredient that may have a substantial influence over the system. In an aquaponic system, water-based environment context, the source of water and what that source water contains chemically, physically and biologically are a major influence over the system because it sets a baseline for what is required to be added to the system by the various inputs of the system.

· Aquaponics Food Production Systems